...

Изогнутый до нагружения стержень (в данном случае мачта) теряетустойчивость при меньшей нагрузке

Короткие стержни разрушаются описанным выше путем с образованием бочкиили дроблением на мелкие куски. Когда отношение длины к толщине стержнядостигает величины 5-10, эта линия пересекает кривую, соответствующую эйлеровойформе потери устойчивости. Теперь более опасным становится выпучивание,и длинный стержень выходит из строя вследствие выпучивания. В действительностипереход от разрушения материала к потере устойчивости происходит не такрезко, существует некая переходная область, отмеченная на рис. 142 пунктиром.

GORD1420

Рис. 142. Зависимость предельного сжимающего напряжения от длины стержня.

Приведенная выше формула Эйлера относится к тому случаю, когда стерженьили панель имеют шарнирное закрепление и могут свободно поворачиваться(рис. 143). Обычно все, что препятствует концам стержня или панели поворачиватьсяприводит к увеличению критической нагрузки потери устойчивости. В крайнемслучае, когда оба конца стержня жестко заделаны, его критическая нагрузкаувеличивается в 4 раза. Очень часто, однако, для жесткой заделки необходимосущественное стеснение концов, а это приводит к увеличению веса, сложностии стоимости всей конструкции, поэтому она становится невыгодной.

GORD1430

Рис. 143. Различные условия эйлеровой формы потери устойчивости.а – оба конца шарнирно оперты;б – оба конца заделаны;в – один конец заделан, а второй шарнирнооперт и может перемещаться в горизонтальном направлении.

Далее, жесткая заделка концов передает любые монтажные несоосности самомустержню. При этом стержень может оказаться изогнутым еще до нагруженияи его предельная нагрузка упадет. Вот почему жесткая установка мачты, прикоторой она одновременно крепится и к палубному перекрытию, и к килю, сейчасуже вышла из употребления (рис. 144).

GORD1440

Рис. 144. Изогнутый до нагружения стержень (в данном случае мачта) теряетустойчивость при меньшей нагрузке.

Следует отметить, что в выписанную нами формулу Эйлера не входит пределпрочности материала. Нагрузка, при которой стержень или панель данной длинытеряет устойчивость, зависит только от момента инерции сечения I имодуля Юнга (жесткости) материала. Длинный стержень не разрушается привыпучивании. Он только упруго изгибается таким образом, чтобы “выскользнуть”из-под нагрузки. Если при выпучивании не был достигнут “предел упругости”материала, то после снятия нагрузки стержень опять выпрямится, и, спружинив,как ни в чем не бывало примет свою прежнюю форму.

Это свойство часто может быть весьма полезным, поскольку, основываясьна нем, можно создавать “неразрушающиеся” конструкции. Ковры и ковровыедорожки не портятся именно по этой причине, и природа, конечно же, широкоиспользует этот принцип, особенно в отношении низкорослых растений, напримертравы, которую всегда довольно трудно вытоптать. Так, мы спокойно гуляемпо лужайке, не причиняя ей большого вреда. Именно гениальная комбинацияострых колючек с открытием д-ра Эйлера делает живую изгородь одновременнонеразрушаемой и труднопреодолимой для людей и скота. С другой стороны,для комаров и других насекомых, использующих в качестве оружия длинноеи тонкое жало, природа вынуждена была “изобрести” прямо-таки невообразимоеколичество самых разных конструкционных уловок, чтобы предотвратить потерюустойчивости этих тонких, жалящих нас стержней.

При жизни Эйлера его формула не могла найти сколько-нибудь значительногоиспользования в технике. Практически ее могли применить лишь при проектированиикорабельных мачт и других стоек. Однако корабельные мастера тех временуже справились с этой проблемой. В замечательных справочниках XVIII в.по кораблестроению, таких, как “Основы изготовления мачт, парусов и такелажа”Стила, содержатся подробные таблицы, где приведены размеры брусьев любоготипа, основанные на опыте, и сомнительно, чтобы эти рекомендации моглибыть существенно улучшены с помощью вычислений.

Серьезный интерес к явлению потери устойчивости возник лишь столетие спустя ибыл связан с возросшим использованием листовой стали. Стальные листы были,естественно, тоньше, чем каменная кладка и деревянные детали, к которым такпривыкли инженеры. В 1848 г. при постройке железнодорожного моста через проливМенайрасчеты на устойчивость впервые делались для серьезных практических целей. Этотмост явился совместным детищем трех выдающихся людей: Роберта Стефенсона(1802-1859), Итона Ходжинсона (1789-1861), математика и одного из первыхпрофессоров-инженеров, и Вильяма Фейрберна (1789-1874), пионераконструкционного использования листовой стали.

Подвесные мосты Стефенсона оказались неудачными из-за своей излишнейгибкости. К тому же адмиралтейство настаивало, и не без оснований, на тридцатиметровойвысоте пролета, чтобы под мостом могли проходить корабли. Удовлетворитьтребованиям как жесткости, так и высоты можно было лишь единственным путем- спроектировав мост балочного типа невиданной до этого длины. По рядусоображений наилучшим вариантом казалась балка в форме трубы, собраннаяиз листовой стали, внутри которой двигался бы поезд. Длина каждой секции

Добавить комментарий