Кроме Ньютона и предрассудков XVIII в. главной причиной столь долгогозастоя в теории упругости было то, что те немногие ученые, которые всеже занимались атой проблемой, пытались анализировать силы и перемещения,рассматривая конструкцию целиком как это делал и Гук, – вместо того чтобыперейти, к силам и деформациям, которые существуют в каждой точке внутриматериала. Предпринимавшиеся в XVIII и XIX вв. такими выдающимися умами,как Леонард Эйлер (1707-1783) и Томас Юнг (1773-1829), попытки решать вполнестандартные с сегодняшней точки зрения задачи кажутся современному инженеруневероятнейшими интеллектуальными ухищрениями.
Концепция упругости материала в точке сводится к понятию о напряжениии деформации, которое впервые в обобщенной форме было сформулировано ОгюстомКоши (1789-1857) в его статье, направленной во Французскую академию наукв 1822 г. После работ Гука эта статья была, быть может, самым важным событиемв истории развития теории упругости. После нее появилась надежда, что этанаука наконец станет орудием в руках инженеров, а не эмпиреями несколькихэксцентричных мыслителей. На портрете, написанном примерно в то же время,Коши выглядит довольно бойким молодым человеком; несомненно, в прикладнойматематике он был большой силой.
Когда в XIX в. английские инженеры наконец снизошли до того, чтобыпознакомиться с работами Коши, то обнаружили, что, усвоив основные понятия онапряжениях и деформациях, можно сразу упростить все исследования по расчетуконструкций. Сегодня эти понятия в широком ходу, и трудно объяснить тозамешательство и смущение, которые иногда испытывают при упоминании о нихнеспециалисты. У меня как-то была аспирантка, незадолго до этого удачнозащитившая диплом по биологии. Изучение понятий о напряжениях и деформацияхвывело ее из душевного равновесия настолько, что она сбежала из университета ибесследно исчезла. Почему – я так и не пойму до сих пор.
Напряжение
Оказывается, к представлению о напряжении был очень близок еще Галилей.В “Двух новых науках” – книге, написанной им в старости в Арцетри, – онясно указывает, что растягиваемый стержень имеет прочность, которая припостоянстве остальных условий пропорциональна площади его поперечного сечения.Иными словами, если стержень сечением 2 см разрывается принагрузке 1000 кгс, то стержень сечением 4 см разрывается принагрузке 2000 кгс. Кажется почти невероятным, что потребовалось почти двастолетия, чтобы разделить разрушающую нагрузку на площадь поверхности вместе разрыва, дабы получить величину, называемую сегодня разрушающим напряжением(в упомянутом выше случае 500 кгс/см) и относящуюся ко всемстержням из того же материала.